Robust Division in Clustering of Streaming Time Series

نویسندگان

  • Pedro Pereira Rodrigues
  • João Gama
چکیده

Online learning algorithms which address fast data streams should process examples at the rate they arrive, using a single scan of data and fixed memory, maintaining a decision model at any time and being able to adapt the model to the most recent data. These features yield the necessity of using approximate models. One problem that usually arises with approximate models is the definition of a minimum number of observations necessary to assure convergence, which implies a high risk since the system may have to decide based only on a small subset of the entire data. One approach is to apply techniques based on the Hoeffding bound to enforce decisions with a confidence level. In divisive clustering of time series, the goal is to find clusters of similar time series over time. In online approaches there are two decisions to make: when to split and how to assign variables to new clusters. We can define a confidence level to both the decision of splitting and the assignment of data variables to new clusters. Previous works have already addressed confident decisions on the moment of split. Our proposal is to include a confidence level to the assignment process. When a split point is reported, creating two new clusters, we can directly assign points which are confidently closer to one cluster than the other, having a different strategy for those variables which do not satisfy the confidence level. In this paper we propose to assign the unsure variables to a third cluster. Experimental evaluation is presented in the context of a recently proposed hierarchical algorithm, assessing the advantages of the proposal, revealing also advantages on memory usage reduction and processing speed. Although this proposal is evaluated under the scope of an existent method, it can be generalized to any divisive procedure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

A Hybrid Time Series Clustering Method Based on Fuzzy C-Means Algorithm: An Agreement Based Clustering Approach

In recent years, the advancement of information gathering technologies such as GPS and GSM networks have led to huge complex datasets such as time series and trajectories. As a result it is essential to use appropriate methods to analyze the produced large raw datasets. Extracting useful information from large data sets has always been one of the most important challenges in different sciences,...

متن کامل

A MPAA-Based Iterative Clustering Algorithm Augmented by Nearest Neighbors Search for Time-Series Data Streams

In streaming time series the Clustering problem is more complex, since the dynamic nature of streaming data makes previous clustering methods inappropriate. In this paper, we propose firstly a new method to evaluate Clustering in streaming time series databases. First, we introduce a novel multiresolution PAA (MPAA) transform to achieve our iterative clustering algorithm. The method is based on...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

Fuzzy clustering of time series data: A particle swarm optimization approach

With rapid development in information gathering technologies and access to large amounts of data, we always require methods for data analyzing and extracting useful information from large raw dataset and data mining is an important method for solving this problem. Clustering analysis as the most commonly used function of data mining, has attracted many researchers in computer science. Because o...

متن کامل

Clustering Techniques for Streaming Time Series Data

Clustering streaming time series also referred to as a multivariate streaming time series clustering has been researcher’s target for a long time. Yet so far there are many issues banning them to reach a nearly optimal solution. In this paper we investigate these works pointing to some of the issues focusing on the parameters and give some points to be accounted for future resaerches.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008